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ABSTRACT

Continuous cultures of bovine trophectoderm (CT-1 and CT-
5) and bovine endoderm (CE-1 and CE-2) were initiated and
maintained on STO feeder cells. CT-1 and CT-5 were derived
from the culture of intact, 10- to 11-day in vitro-produced blas-
tocysts. CE-1 and CE-2 were derived from the culture of im-
munodissected inner cell masses of 7- to 8-day in vitro-produced
blastocysts. The cultures were routinely passaged by physical dis-
sociation. Although morphologically distinct, the trophectoderm
and endoderm both grew as cell sheets of polarized epithelium
(dome formations) composed of approximately cuboidal cells.
Both cell types, particularly the endoderm, grew on top of the
feeder cells for the most part. Trophectoderm cultures grew fast-
er, relative to endoderm, in large, rapidly extending colonies of
initially flat cells with little or no visible lipid. The endoderm, in
contrast, grew more slowly as tightly knit colonies with numer-
ous lipid vacuoles in the cells at the colony centers. Ultrastruc-
ture analysis revealed that both cell types were connected by
desmosomes and tight junctional areas, although these were
more extensive in the trophectoderm. Endoderm was particu-
larly rich in rough endoplasmic reticulum and Golgi apparatus
indicative of cells engaged in high protein production and se-
cretion. Interferon tau expression was specific to trophectoderm
cultures, as demonstrated by reverse transcription-polymerase
chain reaction, Western blot, and antiviral activity; and this
property may act as a marker for this cell type. Serum protein
production specific to endoderm cultures was demonstrated by
Western blot; this attribute may be a useful marker for this cell
type. This simple coculture method for the in vitro propagation
of bovine trophectoderm and endoderm provides a system for
assessing their biology in vitro.

INTRODUCTION

Although several trophectoderm cell cultures or cell
lines have been reported for the pig [1,2], rat [3–5], and
human [6–8], there are few reports concerning the contin-
uous culture of trophectoderm from ruminants [9]. Indeed,
some reports have indicated that primary cultures of ru-
minant blastocyst cells quickly lost replicative capacity
[10,11]. Similarly, although mouse endoderm-like cultures
have been produced, usually differentiating from embry-
onic or embryonal carcinoma stem cell cultures, no pub-
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lished information is available on the continuous culture of
extraembryonic endoderm from ruminants [10,12–14].

In vitro models of bovine trophectoderm and endoderm
are needed to define better the biological characteristics of
these extraembryonic cell types in ruminants. For example,
a specific interferon, interferon tau, is produced specifically
by the trophectoderm cells of the ruminant conceptus dur-
ing the establishment of pregnancy, and it was demonstrat-
ed to be of importance in maintenance of the corpus luteum
[15–18]. Some of the biology of bovine interferon tau
(bIFN-t) is difficult to assess without a culture system for
bovine trophectoderm maintenance and propagation
[19,20]. Recently, a human choriocarcinoma cell line (JAR)
was used to investigate the regulatory domains of bIFN-t
[21,22]. Such studies could be more relevant physiologi-
cally if a bovine trophectoderm cell line was available that
was known to be competent for the in vitro expression of
bIFN-t. Also, studies related to the induction of bIFN-t by
cytokines such as granulocyte macrophage colony-stimu-
lating factor, or cellular interaction studies (e.g., macro-
phage interactions), might be more effectively pursued
within the context of a bovine trophectoderm in vitro model
system [23,24]. For similar reasons, an in vitro model sys-
tem would also be useful in studying the extraembryonic
endoderm of ruminants.

Mouse parietal and visceral endoderm cell lines have
been established and used to investigate embryonic differ-
entiation and production of endoderm-specific proteins
[12,13,25]. Mummery et al. [13] showed that visceral en-
doderm-like cells could induce differentiation of mouse em-
bryonal carcinoma cells. This phenomenon was also indi-
cated by the recent study of Brook and Gardner [26] in
which the presence of endoderm appeared to be a key factor
in preventing the derivation of mouse embryonic stem (ES)
cell lines. An in vitro model of ruminant extraembryonic
endoderm could therefore be useful in studying similar phe-
nomena in attempts to establish cultures of bovine ES cells.
Also, since the development of the blastocyst and yolk sac
is profoundly different in ruminants as compared with other
species, such as the mouse and human, bovine endoderm
and trophectoderm cell cultures could offer more relevant
cellular substrates with which to test the biological pro-
cesses associated with the establishment of pregnancy in
ruminants.

Primary outgrowths of bovine trophectoderm and en-
doderm were observed during attempts to establish bovine
epiblast cells in culture [27]. In order to evaluate the po-
tential of these outgrowths as in vitro biological models,
we undertook an assessment of their propagation in culture
and of some of their functionally relevant gene or protein
expression.
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MATERIALS AND METHODS

Cell Culture

All cells were grown on tissue culture plastic ware
(Nunc, Roskilde, Denmark; Falcon, Becton-Dickinson, Lin-
coln Park, NJ). Cryovials (2 ml) were purchased from
Nunc. Fetal bovine serum (FBS) was obtained from Gibco
(Gaithersburg, MD) or from Hyclone (Logan, UT). Cell
culture reagents including Dulbecco’s PBS without Ca21

and Mg21, media, trypsin-EDTA (0.05% trypsin, 0.43 mM
EDTA), antibiotics, nonessential amino acids, and L-gluta-
mine were purchased from Gibco. STO cells (CRL 1503;
American Type Culture Collection, Rockville, MD) were
grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% FBS. Feeder layers were prepared
with mitomycin C as previously described [28] or by ex-
posing a suspension of STO cells to 8 krad gamma radia-
tion and plating the cells at 6 3 104 cells/cm2. Feeder layers
were maintained by refeeding with 10% DMEM every 6–
7 days.

Bovine blastocysts used as starting material were pro-
duced by in vitro maturation, fertilization, and culture
(IVMFC) as described elsewhere [29]. Primary cultures of
bovine trophectoderm were initiated by plating intact
hatched 10- to 11-day bovine blastocysts produced by
IVMFC into 4-well tissue culture dishes (Nunc) containing
feeder layers of STO mouse fibroblast cells. STO feeder
cells were prepared at least 3 days in advance. In a similar
manner, primary bovine endoderm cultures were initiated
from inner cell masses (ICMs) isolated from 7- to 8-day
IVMFC bovine blastocyst. ICMs were isolated by immu-
nosurgery as previously described [27]. Blastocysts and
ICMs were plated in 1 ml of 10% DMEM-199 medium (1:
1 mixture of DMEM supplemented with 10% FBS, 2-mer-
captoethanol [2-ME; 0.1 mM; Sigma Chemical Co., St.
Louis, MO], nucleosides [0.03 mM guanosine, 0.03 mM
adenosine, 0.03 mM cytidine, 0.03 mM uridine, and 0.01
mM thymidine] from Sigma, nonessential amino acids [sin-
gle-strength], glutamine [2 mM], and antibiotics [28], and
Medium 199 supplemented with 10% FBS, 2-ME, and an-
tibiotics). Fresh 10% DMEM-199 was added to the primary
cultures every 3–4 days.

Secondary passage of the trophectoderm and endoderm
cell cultures was done by trypsin-EDTA treatment com-
bined with physical dissociation (shearing by repeated pi-
pette aspirations) for the first 2–3 passages. Trypsin-EDTA
treatment or EDTA alone was found to be deleterious to
the cells, and subsequent passaging of the cultures was per-
formed by physical dissociation only. Physical passage con-
sisted of removing the monolayer of cells from the tissue
culture flask surface by shooting jets of medium onto the
monolayer surface with a serological pipette. The cell
sheets were broken up into relatively large pieces by re-
peated aspirations through the pipette. The cells were pel-
leted by centrifugation in a round-bottom centrifuge tube.
After the medium was aspirated off, the cell pellet was
ground, mortar-and-pestle style, using a 2-ml plastic sero-
logical pipette as a pestle. The resulting relatively small
clumps of cells were resuspended in 10% DMEM-199 and
plated onto STO feeder cells, typically at a 1:10 split ratio.

An alternative method for the passage of the cultures
was a modification of a method described by Bednarz et
al. [30] for endothelial cells. The medium was withdrawn
from confluent monolayers of trophectoderm or endoderm,
and the flask was flooded with 2 M urea in culture-grade
water. The cells were incubated in 2 M urea at approxi-

mately 358C for 5–6 min, at which time cells were begin-
ning to detach from one another. The cell monolayer was
gently washed one time with PBS, and 0.5 ml of trypsin-
EDTA was added to the flask (T25) to finish dissociation
of the cells by incubating at about 358C for 5 min. The
cells were resuspended in 10% DMEM-199 and plated onto
STO feeder cells, typically at a 1:10 dilution. A large per-
centage of trophectoderm and endoderm cells survived the
urea/trypsin-EDTA treatment, whereas most or all of the
STO feeder cells exposed to urea appeared to be lysed. This
method was effective in producing a single-cell suspension
of the trophectoderm or endoderm cells that was particu-
larly useful for cell enumeration and metaphase spread
preparation.

Cytogenetic Analysis

CT-1 cells were analyzed for chromosome content at
passages 30 and 54. CT-1 cells were harvested to single
cells by treatment with 2 M urea and trypsin-EDTA as de-
scribed above. The cells were collected in 5 ml of 10%
DMEM to inactivate the trypsin, transferred to a 15-ml con-
ical centrifuge tube, and spun in a Sorvall (Newtown, CT)
RT6000 centrifuge for 10 min at 180 3 g to form a cell
pellet. The supernatant was gently aspirated from the cell
pellet and discarded. The pellet was gently broken to a
slurry with finger flicking, and 5 ml of 75 mM hypotonic
KCl was added with a Pasteur pipette while the cells were
gently agitated. The cells were allowed to swell for 15 min
at room temperature, and 1 ml ice-cold methanol acetic acid
fixative (3:1) was added dropwise with constant mixing. An
additional 5 ml of fixative was added 1 ml at a time; the
tube was mixed by inversion after each addition of fixative.
The cells were spun gently for 10 min at 180 3 g; the
supernatant was aspirated, and an additional 6 ml of fixative
was added. The cells were allowed to fix for 10 min on ice;
then the tubes were spun again (10 min, 180 3 g) to form
a pellet. The supernatant was again aspirated, and the pellet
was resuspended in a sufficient amount of fixative (0.2–1
ml) to give a slightly milky suspension of cells.

Metaphase spreads were prepared by dispensing 1 drop
of cell suspension from a height of 3–5 cm onto prechilled
slides. The slides were flooded with fresh fixative from a
Pasteur pipette and allowed to dry in a humidified box at
room temperature. The slides were checked at 203 mag-
nification under phase-contrast to ensure proper spreading
and proper dilution of the cell suspension. The air-dried
slides were stained for 13 min in 5% Gurr’s Geimsa stain
in PBS, washed briefly with water, and air dried. Chro-
mosomes in metaphase spreads were counted at 4003 mag-
nification.

In addition, metaphase spreads on replicate slides were
stained with 1 mg/ml propidium iodide for fluorescent ob-
servation. Propidium iodide-stained metaphase spreads
were imaged at 10003 magnification using a Zeiss (Carl
Zeiss, Thornwood, NY) LSM 410 Confocal Microscope
equipped with a 1003 plan-neofluor oil immersion lens.
The 568-nm line of an argon/krypton laser was used for
excitation, and emitted light was filtered through a long-
pass 590-nm emission filter.

Antiviral Activity Assay

Antiviral assays were completed as described by Roberts
et al. [31] at various passages for CT-1 and CE-1 (see Table
1) and for CE-2B at passage 3. Briefly, 50 ml of each sam-
ple of cell culture-conditioned medium (48–96 h) was add-
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TABLE 1. Antiviral activity of conditioned culture media.a

Sampleb bIFN-tc (pM)
bIFN-tc

(ng/ml medium)

Polyclonal trophectoderm, P5
CT-1 (P12, 13, 14)
CT-1 (P15, 17, 19)
CT-1 (P21, 22, 26, 32)
CT-1 (P53, 55)
CT-5 (P4)
Polyclonal endoderm (P4)
CE-1 (P9, 12, 14)
CE-2B (P3)
STO Feeders
DMEM/199 medium

1,296
31,098 6 13,613
1,793 6 643
5,097 6 2,021
1,574 6 223

3,888
ND
ND
ND
ND
ND

30
715 6 313
40 6 14

110 6 42
35 6 5

89
ND
ND
ND
ND
ND

a Assay sensitivity was # 209 pM (4.7 ng/ml).
b P, Number of passages in culture.
c ND, Not detectable.

ed to 100 ml of medium, and 3-fold serial dilutions were
made. After coincubation with Madin-Darby kidney cells
for 24 h, cells were challenged with vesicular stomatitis
virus; and after 18 h, cell viability was determined. The
ability of samples to prevent virus-induced cell lysis by
50% was compared to a laboratory standard of recombinant
interferon tau, rbIFN-t1 (5.4 3 107 IU/mg), which provided
50% inhibition from virus-induced cytolysis at 5.3 pM. As-
says were completed in duplicate, and results were reported
in pM or ng/ml of IFN-t in culture medium.

Immunoblot Analysis of Conditioned Medium

Four milliliters of serum-free (SF) medium (DMEM-199
containing 10 mg/ml bovine insulin [Collaborative Biomed-
ical Products, Bedford, MA]) was conditioned for 48 h by
confluent monolayers of CT-1 trophectoderm (T25 flasks)
that had been washed 4 times with SF medium, the last
wash including an incubation of several hours at 378C and
5% CO2 atmosphere. The washes were performed to re-
move traces of serum proteins left behind by the FBS-con-
taining growth medium routinely used in the propagation
and maintenance of the cell culture. T25 cultures of bovine
endoderm, CE-1, CE-2 and CE-2B, and STO feeder cells
alone were similarly treated and allowed to condition the
medium for 48 h. CT-1 was assayed at passages 15, 16,
and 21. CE-2 and CE-2B were assayed at passage 2. CE-1
was assayed at passages 10, 11, and 14. Conditioned-me-
dium samples were centrifuged at 500 3 g for 15 min to
pellet cell debris, and supernatants were frozen at 2208C.
Conditioned-medium samples (single-strength), precondi-
tioned medium, and diluted adult cow serum were mixed
3:1 with 4-strength loading buffer containing SDS and b-
mecaptoethanol. Samples were loaded onto either 8% or
13% polyacrylamide gels, and electrophoresis (PAGE) was
performed as described by Laemmli [32]. Proteins were
transferred to nitrocellulose membrane (0.2 mm), blocked
with gelatin, and probed with polyclonal rabbit antisera to
transferrin (Sigma) or anti-bIFN-t (1:2500 dilution) provid-
ed by Dr. Michael Roberts (University of Missouri, Colum-
bia) [33]. Specific immunoreactive antigens were visualized
with alkaline phosphatase-conjugated secondary antibody
reagents (Sigma).

Reverse Transcription-Polymerase Chain Reaction
(RT-PCR) Analysis

Total RNA was isolated from primary cell culture sam-
ples, 500–1000 cells, using RNeasy Mini kit (Qiagen, Chat-

sworth, CA) or Purescript RNA isolation kit for 100–10
000 cells (Gentra Systems, Minneapolis, MN) according to
the manufacturer’s protocols. Total RNA was also isolated
from an in vivo 17-day bovine conceptus as a positive con-
trol for bIFN-t expression [18] by the method of Chom-
czynski and Sacchi [34]. RNA transcripts were reverse tran-
scribed to first-strand cDNA using the GeneAmp RNA
PCR kit (Perkin Elmer, Foster City, CA) essentially as spec-
ified by the manufacturer’s instructions. PCR analysis of
the RT product was performed with bIFN-t specific prim-
ers, kindly provided by Dr. Michael Roberts (forward prim-
er, 59-GCCCTGGTGCTGGTCAGCTA-39 and reverse
primer, 59-CATCTTAGTCAGCGAGAGTC-39), and with
b-actin primers (forward primer, 59-TACAATGAGCTGC
GTGTGG-39 and reverse primer, 59-TAGCTCTTCTCCA-
GGGAGGA-39). PCR reactions were prepared as described
by the Taq polymerase manufacturer (Perkin Elmer). A 4.5-
ml aliquot of the RT product was amplified in a total vol-
ume of 25 ml containing single-strength PCR Buffer II (Per-
kin Elmer), 50 pmol of each primer, 2 mM MgCl2, and
0.625 U Amplitaq (Perkin Elmer). The PCR reactions were
carried out in capped PCR microtubes in a Perkin Elmer
GeneAmp 9600 PCR System thermocycler. After an initial
2-min heating at 958C, 50 cycles of 1 min at 958C for de-
naturation, 1 min at 568C for annealing, and 1 min at 728C
for synthesis were carried out. The PCR reaction was com-
pleted by 7 min at 728C followed by a holding temperature
of 48C. PCR products were analyzed on a 1% agarose gel
with comparison to a 100-base pair (bp) DNA ladder (Gib-
co) and had expected product sizes of 584 bp for bIFN-t
and 450 bp for b-actin. The absence of genomic DNA in
the RT-PCR reactions was assessed by treating selected
RNA isolates with DNase-free ribonuclease A (Boehringer-
Mannheim Biochemicals, Indianapolis, IN) prior to RT-
PCR. Also, the b-actin primers spanned intron 2 of the b-
actin gene, and the presence of genomic DNA would be
expected to generate a larger amplicon. All the samples
were assayed for b-actin and yielded only the 450-bp am-
plicon.

Transmission Electron Microscopy

Transmission electron microscopy sample preparation
and photomicroscopy were accomplished with the assis-
tance of JFE Enterprises, Brookeville, MD. Trophectoderm
culture CT-1 at passage 11 and endoderm cultures CE-2
and its subclone CE-2B (both at passage 2) were fixed in
situ with 2.5% glutaraldehyde for 4 h followed by Mil-
lonig’s phosphate buffer washes [35]. The culture was post-
fixed in 1% osmium tetroxide for 1 h. After dehydration in
an ethyl alcohol series (70% to 100%, and propylene oxide
transitional fluid), the cultures were infiltrated with plastic
resin (Spurr’s) and polymerized in a 708C oven. Ultrathin
sections (60–80 nm) were stained with 2% uranyl acetate
for 1 h prior to examination with a Zeiss EM10 CA trans-
mission electron microscope operating at 60 kV.

Calcium/Phosphate-Mediated DNA Transfection

CT-1 cells were transfected using a calcium/phosphate-
mediated DNA transfection protocol [36]. Briefly, 40 mg of
DNA in 0.5 ml of 0.25 M CaCl2 was added dropwise to
0.5 ml of double-stength Hepes-buffered saline (HBS 23)
while vortexing. For preliminary experiments, HBS 23 was
prepared at pH 6.8 through 7.2 in 0.1 increments. After
approximately 10 min of incubation of the DNA precipitate
at 228C, each well of cells of a 6-well plate (35 mm) were
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FIG. 2. Cell replication assay over a 10-day culture period. CT-1 cells,
CT-1-Urea, and CE-2B cells were grown on STO feeder layers at passage
31, 33 and 10, respectively. CT-1-Urea refers to CT-1 cells that were pas-
saged by the urea/trypsin-EDTA protocol for six consecutive passages pri-
or to assay. Total cells per T25 flask was derived by averaging the counts
of eight hemocytometer squares (1 mm2) for CT-1 cells or 16 hemocytom-
eter squares for CT-1-Urea and CE-2B. Input of CT-1, CT-1-Urea, and CE-
2B cells was undefined, but was a 1:10 split ratio for CT-1 and CT-1-Urea
and a 1:5 split ratio for CE-2B.

b

FIG. 1. Phase-contrast photomicrographs of bovine trophectoderm and
endoderm in STO coculture. A. Primary trophectoderm colony outgrowth;
note dome formation (arrowheads). Bar 5 44 mm. B. CE-2B cell mono-
layer, passage 6; note vesicle formations and piled cells (arrowheads). Bar
5 46 mm. C. CT-1 cell monolayer, passage 31; note dome formation
(arrowheads). Bar 5 46 mm. D. Primary endoderm colony outgrowth;
note vesicle formations and piled cells (arrowheads). Bar 5 52 mm. E.
Mixed secondary culture of trophectoderm and endoderm colonies fixed
and stained with Giemsa stain; note the smaller size and more tightly
organized endoderm colony morphology (arrowheads) compared with the
larger, more widely spreading trophectoderm colony morphology (ar-
rows). Bar 5 6.5 mm.

washed with single-strength HBS of the appropriate pH.
The DNA precipitate (0.5–1.0 ml) was then used to replace
the single-strength HBS. After an additional incubation of
10 min, fresh medium was added to each well (2.5 ml).
After 12–18 h of culture with the DNA precipitate, cells
were washed, and fresh medium was replaced. Washing
treatments included calcium/magnesium-free PBS, PBS
with 1 mM EGTA, or PBS with 10% glycerol for 1 min
followed by 3 washes with PBS.

The CT-1 cells were transfected with green fluorescent
protein (GFP) reporter plasmids derived from pEGFP-N1
(cat. no. 6085–1; Clontech, Palo Alto, CA) and modified
with SV-40 nuclear localization signal sequence. The ex-
pression of GFP was driven by either of 4 different pro-
moters as follows: human elongation factor (hEF) [37],
phosphoglycerate kinase (PGK) [38], cytomegalovirus
(CMV; cat. no. 6085–1, Clontech), and Oct 3/4 [39]. Plas-
mid DNA was precipitated at pH 6.8, and 40 mg of each
plasmid was transfected per 35-mm-well cell culture. The
CT-1 cocultures were prepared 3–4 days prior to transfec-
tion by plating CT-1 cells, prepared by scrapping and shear-
ing the cells into small clumps, at a 1:5 split ratio.

Cells were assayed for expression of green fluorescence
at 48 h after initiation of transfection by blue light excita-
tion (490 nm) epifluorescence using an Olympus (Tokyo,
Japan) IMT-2 inverted microscope equipped with an IMT2-
RFL reflected light fluorescence attachment.

RESULTS

Cell Culture

Primary outgrowths of bovine trophectoderm were ini-
tiated from IVMFC 10- to 11-day hatched blastocysts that
were plated on STO feeder cells. The culture system pro-
duced hatched blastocysts at 7–8 days with prominent
ICMs. Since tissues of the ICM were unwanted, the addi-
tional days of culture allowed time for the ICMs to degen-
erate before the blastocysts were plated (unpublished re-
sults). Endoderm outgrowths, recognized by their distinct
cell and colony morphology (Fig. 1), were seldom observed
to grow out from cultures of 10- to 11-day hatched blas-
tocysts. If endoderm contamination of the primary troph-
ectoderm culture occurred, a micropipette was used to dis-
sect and aspirate the endoderm colony from the culture.
This could be accomplished with great efficiency because
the endoderm cells were strongly connected to one another
so as to form a continuous unit of cells and because the
endoderm was not adherent to trophectoderm.

Primary trophectoderm cultures were started by pressing
the 10- to 11-day-old IVMFC blastocysts down onto the
feeder cells using 25-gauge hypodermic needles. This punc-
tured the blastocysts and helped the trophectoderm cells
adhere to the culture substrate. In the first 24 h, many blas-

tocyst cells appeared to undergo some necrosis. However,
after several days, outgrowths of healthy trophectoderm
cells appeared from the necrotic mass and grew out in a
radial fashion. About 75% of the blastocysts gave rise to
primary trophectoderm colonies (n ù 30). These primary
colonies were composed of monolayers of approximately
cuboidal cells growing on top of the STO feeder cells with
the central-most cells tightly packed and, therefore, smaller
and more regular in appearance (Fig. 1A). The primary
trophectoderm cells had a granular cytoplasm, and numer-
ous lipid droplets were prominent in these cells, particularly
in the central area of the colony.

Secondary culture of the trophectoderm was initially
done by exposing the colonies to trypsin-EDTA after two
washes with Ca21/Mg21-free PBS. Trypsin-EDTA had little
effect on the cells, and they were poorly separated from
one another. The trophectoderm cells could, however, be
separated into small clumps of cells with shearing action
created by forceful and repeated aspirations with a pipette.
To expand the culture, the clumps of surviving trophecto-
derm were plated onto fresh STO feeder layers in T25 tis-
sue culture flasks. Outgrowths from the dispersed clumps
of cells were robust for the first 2–4 passages at 1:2 split
ratios. After this time, however, the continued use of tryp-
sin-EDTA was too damaging, and the cultures would not
survive or grow well. If, instead, the trophectoderm cultures
were dispersed into small clumps of cells by physical shear
force alone (see Materials and Methods), they did survive
and grew well after each passage. By this means a culture
derived from a single blastocyst, designated CT-1, was es-
tablished for characterization.

The CT-1 bovine trophectoderm cells were cultured con-
tinuously for over 2 yr and 76 passages with portions frozen
every 5–10 passages. CT-1 was passaged at 1:3 or 1:5 split
ratios for the first 15 passages and thereafter routinely split
at a 1:10 ratio. The CT-1 cells grew without senescent
changes being observed over this time. The CT-1 cells grew
relatively rapidly with a doubling time estimated at 24 h
after a lag period of 2–3 days following each passage (Fig.
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FIG. 3. Karyotype analysis of CT-1 cells. Metaphase spreads of CT-1 cells
were prepared and counted at passage 30 (A) and passage 54 (B).

FIG. 4. RT-PCR analysis of bIFN-t expression in primary trophectoderm
colonies grown on STO feeder cells. The cDNA from individual indepen-
dent trophectoderm primary colonies (TROPH) consisting of approxi-
mately 1000 cells or patches of approximately 1000 STO feeder cells
(STO) was assayed by RT-PCR using primers specific for bIFN-t that pro-
duced a full-length amplicon of 584 bp from 17-day conceptus cDNA.
Mr: relative migration of 100-bp DNA ladder.

2). After passage at a 1:10 split ratio, the cells reached
confluency in about 7 days. The secondary cultures were
morphologically similar to the primary outgrowths after
reaching confluency (Fig. 1B). Prior to reaching confluency,
the cells were less distinct and somewhat larger in appear-
ance, being flat, spread out, and thin. The individual colo-
nial outgrowths after each passage enlarged rapidly to pro-
duce a distinct macroscopic colony morphology. During
this outgrowth the cells often pushed down to the plastic
substrate underneath the STO feeder cells. After reaching
confluency, the cells became progressively more crowded,
and they formed numerous domes by transporting fluid ba-
solaterally (Fig. 1C). The cultures could be maintained at
confluency for many weeks by refeeding every 3–4 days
with fresh medium. Confluent cultures released noticeable
amounts of flocculent material in the medium between
feedings. The flocculent material appeared to be composed
of detached cells or cellular debris, presumably of troph-
ectoderm origin and not of feeder cell origin because of its
constant production. After 1–2 wk at confluency the culture
was nearly opaque when viewed macroscopically from un-
derneath.

Primary bovine endoderm cultures were initiated on
STO feeder cells from ICMs immunodissected from 7- to
8-day hatched blastocysts. Endoderm cell outgrowths were
recognized by their characteristic cell and colony morphol-
ogy (Fig. 1). Contaminating trophectoderm cells, recog-
nized by their morphology, were rarely observed in the pri-
mary endoderm colonies, but, if found, were removed by

dissection and aspiration with a mouth-controlled micro-
pipette. Any surviving epiblasts were similarly identified
and removed. The primary endoderm cell culture was
grown for 2–4 wk before the first secondary passage. The
primary colony was composed of approximately cuboidal
epithelial cells closely packed together in the center of the
colony; cells were flatter and more spread out at the pe-
riphery of the colony. The primary colony would frequently
have domes or areas of cells that formed vesicle-like struc-
tures by transporting fluid between two or three adjacent
cells (Fig. 1). The cells were not as granular in appearance
as trophectoderm cells, had scant amounts of visible lipid,
and, particularly at the colonies’ periphery or at domes, had
distinct, dark, weblike arrangements of cytoskeletal fibers.
The cells grew predominantly on top of the STO feeder
cells.

Secondary culture of endoderm cells was accomplished
by physically shearing the primary colonies into small
clumps of cells and passaging them onto new STO feeder
cells. The endoderm cells were more adherent to each other
than the trophectoderm cells. Therefore, passage by expo-
sure to urea/trypsin-EDTA (see Materials and Methods)
was particularly effective and was routinely used in later
secondary passages. Exposure to trypsin-EDTA alone was
deleterious to the cells and was not effective at separating
the cells from one another.

Secondary cultures of endoderm cells were collections
of individual colonial outgrowths from individual clumps
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FIG. 5. Immunoblot of CT-1 and CE-2B conditioned medium demon-
strating specific expression of bIFN-t and transferrin, respectively. Western
blots of single-strength conditioned medium (48–72 h) were probed with
anti-bIFN-t (A) or anti-bovine transferrin (B) or were stained for total pro-
tein with Coomassie blue (C). Lane 1, unconditioned-medium control;
lane 2, STO feeder cell-conditioned medium control; lane 3, CT-1 at pas-
sage 21 (P21); lane 4, CT-1 at passage 15; lane 5, CT-1 at passage 16;
lane 6, CE-2B at passage 2; lane 7, CE-2 at passage 2; lane 8, CE-1 at
passage 14; lane 9, CE-1 at passage 11; lane 10, CE-1 at passage 10; lane
11, Blank; lane 12, 75 ng of recombinant bIFN-t in (A), or 0.1 ml of adult
bovine serum in (B), or 0.05 ml of adult bovine serum in (C).

FIG. 6. Transmission electron micrograph of bovine trophectoderm CT-
1 cells and bovine visceral endoderm CE-2B cells in culture. A. CT-1 cells
at passage 11 in coculture with STO feeder cells. Note the numerous and
long microvilli at the apical surface of the CT-1 cells (arrows) and des-
mosomal and tight junction connections between the CT-1 cells (arrow-
heads). The CT-1 monolayer was elevated above the STO feeder cell sub-
strate as a result of dome formation, i.e., fluid transport under the basal
membrane. 39500. B. CE-2B cells at passage 2 in coculture with STO
feeder cells. Note large STO feeder cells underneath the three cuboidal
CE-2B cells, and tight junctions and the cell-to-cell spot desmosomal at-
tachments at characteristic ladder-like spokes (arrowheads). 34800. nu,
Nucleus. (Published at 49%.)

of cells attached to the feeder cells. Two independent en-
doderm cell cultures were propagated, designated as CE-1
and CE-2. In both CE-1 and CE-2, an unknown epithelial
cell type that grew faster than the typical primary endoderm
cell type was discovered. After about 10 passages at 1:2 or
1:3 split ratios, this unidentified epithelial cell took over the
CE-1 culture. CE-2 was subcloned at passage 3 by picking
individual colonial outgrowths (colony cloning) by mouth-
controlled micropipette and transferring each into the well

of a 4-well tissue culture plate (Nunc) containing STO feed-
er cells. By this means, pure cultures of endoderm, as rec-
ognized by morphology, were established. The subclones
appeared to grow at varying rates but were all similar to
the primary endoderm cultures in cell and colony mor-
phology. One of these cultures, designated CE-2B, grew the
fastest, with a doubling time of approximately 48 h (Fig.
2); and it was effectively passaged by physical shearing or,
subsequently, by the urea exposure method. The colony and
cell morphology of CE-2B, and the other subclones, dif-
fered from that of primary endoderm outgrowths in that the
cells accumulated large amounts of lipid, particularly those
located at the center of the colonies. CE-2B was passaged
at 1:3 ratios in coculture on STO feeder cells for 12 pas-
sages over the 6-mo period of the study. Aliquots of the
cells were frozen at several passage levels.

Karyotype Analysis of CT-1 Cells

Cytogenetic analysis of the CT-1 cells was undertaken
using urea/trypsin dissociation to create single-cell suspen-
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FIG. 7. CT-1 cells in a dome area of the monolayer culture on STO feeder cells at passage 11. Tight junctional area (small arrowheads) and desmosomes
(large arrowheads) connected the CT-1 cells together. Note the interdigitated connection between the two cells at their basal membrane and numerous
long microvilli (mv) at their apical membrane. 330 000. m, Mitochondria; rer, RER; g, Golgi complexes; f, microfilaments; L, lipid vacuole; nu, nucleus.
(Published at 74%.)

sions (see Materials and Methods). Figure 3A shows the
distribution of chromosome counts obtained from the enu-
meration of 73 CT-1 metaphase spreads at passage 30. A
bimodal distribution was found in which 64% of the
spreads had a normal diploid number of 60 chromosomes.
Hypodiploid counts were found in 30% of the metaphase
spreads, and, notably, the majority of these (82%) had 50
chromosomes. A few cells were found to have a tetraploid
number of 120 (Fig. 3A).

Analysis of 49 metaphase spreads prepared at passage
54 showed a shift to a unimodal distribution with 82% of
the cells having between 60 and 65 chromosomes (Fig. 3B).
A majority of these were distributed at and around a content
of 64 chromosomes (Fig. 3B). The remaining 18% of meta-
phase spreads consisted of cells with various hypo- and
hyperdiploid contents or near tetraploid cells (Fig. 3B). All
the chromosomes at both passage levels were acrocentrics
or telocentrics with the exception of the X chromosome,
which was submetacentric and of which there appeared to
be two.

Trophectoderm and Visceral Endoderm mRNA and
Protein Expression Analysis

Primary cultures of bovine trophectoderm were as-
sayed for expression of the bIFN-t gene by RT-PCR and
Northern blotting. The RT-PCR analysis detected the pre-
dicted 584-bp bIFN-t amplicon in the Day 17 cow con-
ceptus positive control and in most, 9 of 11, of the in-
dependent primary trophectoderm cultures assayed (Fig.
4). This specific amplicon was not detected in primary
and secondary endoderm cultures (not shown) or in STO
feeder cells, although smaller amplification products of
approximately 380 bp or 150 bp were often detected in
all tissue culture samples. Pretreatment of the primary
trophectoderm cultures with RNase abolished all ampli-
cons from the primary trophectoderm cultures (Fig. 4).
Northern blot analysis using a full-length bIFN-t probe
detected a single transcript of approximately 0.8 kb in
the 17-day cow conceptus and primary trophectoderm
culture total RNAs (not shown), thus confirming the RT-
PCR results.
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FIG. 8. In vivo cow trophectoderm and endoderm from a 19-day bovine
blastocyst. This portion of the expanded blastocyst had closely organized
trophectoderm cells (TROPH) with abundant apical microvilli (mv) facing
the uterine environment. Note the tight junctional (small arrowheads) and
desmosomal (large arrowheads) areas of trophectoderm cell union. The
endoderm cells (ENDO) were positioned just underneath the basal mem-
brane of the trophectoderm cells. 34800. nu, Nucleus; L, lipid vacuole.
(Published at 45%.)

Conditioned media (single-strength) from the CT-1, CE-
2B, and STO feeder cells were analyzed for expression of
bIFN-t and transferrin by immunoblotting. Western blots
that were reacted with anti-bIFN-t antibody detected pro-
teins of 20–23 kDa, which would be expected for the dif-
ferentially glycosylated isoforms of bIFN-t (Fig. 5A, lanes
3, 4, and 5). Conditioned medium from endoderm cultures
CE-1, CE-2, and CE-2B, STO, and unconditioned medium
were all negative for reactivity with the anti-bIFN-t anti-
body (Fig. 5A). The recombinant bIFN-t control showed a
single protein band by Coomassie staining at the expected
size of 19 kDa (not shown). However, the bIFN-t prepa-
ration was apparently contaminated with small amounts of
various bacterial proteins that were detected by the anti-
body preparation (Fig. 5A, lane 12).

Western blots of single-strength conditioned medium
showed that CE-2B cells produced numerous proteins in
large amounts that corresponded in profile to cow serum
proteins (Fig. 5C, lanes 6 and 7). In contrast, CT-1 troph-
ectoderm cell and STO feeder cell-conditioned media did
not present a protein profile resembling that of serum (Fig.
5C, lanes 2–5). The endoderm culture taken over by the
unidentified epithelial cell type, CE-1, had much less of the
proteins produced by the CE-2B clonal culture. Western
blots probed with antiserum to bovine transferrin showed
strong reaction with a 72-kDa protein as expected in the
CE-2 and CE-2B cultures (Fig. 5B, lanes 6 and 7), but little
or no reaction in conditioned medium from CE-1 endoderm
cultures overgrown by the variant epithelial cell type (Fig.
5B, lanes 8–10). Unconditioned medium and conditioned
medium from CT-1 cultures and STO feeder cells showed
no reaction with the anti-transferrin antibody (Fig. 5B,
lanes 2–5).

Antiviral Activity Assay of Conditioned Media

Conditioned media from CT-1, CT-5, CE-1, CE-2B, and
polyclonal secondary trophectoderm cultures and STO
feeder cells were analyzed for the presence of antiviral ac-
tivity in comparison to an unconditioned-medium negative
control and a recombinant bIFN-t positive control (Table
1). Only the conditioned media from the CT-1, CT-5, and
polyclonal secondary trophectoderm cultures contained an-
tiviral activity. The amount of antiviral activity in the CT-
1 culture varied from sample to sample but did not appear
to be related to passage level.

Transmission Electron Microscopy

The CT-1 bovine trophectoderm culture and CE-2B bo-
vine endoderm culture were prepared for ultrastructural an-
alyses at approximately 3 wk postpassage at passage 11 and
passage 2, respectively.

CT-1 cells were arranged in a single layer of elongated
cuboidal cells growing on top of or between the STO feeder
cells (Figs. 6A and 7). The CT-1 cells were usually in close
proximity to the STO feeder cells, except where dome for-
mation occurred, but were never intimately joined to the
STO cells. The CT-1 cells displayed a polarized morphol-
ogy with prominent and numerous microvilli at their apical
surface facing the medium. The CT-1 cells were joined by
numerous desmosomal elements and tight junctional com-
plexes at their lateral surfaces (Fig. 7). Golgi complex,
smooth and rough endoplasmic reticulum (RER), mito-
chondria, and microfilaments were all numerous and well
represented in the CT-1 cells (Fig. 7). Large lipid vacuoles
were occasionally found, although the lipid was often com-

pletely or partially removed during preparation. Overall the
CT-1 cells were similar to in vivo bovine trophectoderm
examined from expanded preimplantation blastocysts (Fig.
8).

The CE-2B bovine endoderm cell culture was composed
of markedly cuboidal cells primarily arranged in a single
layer growing on top of the STO feeder cells (Figs. 6B and
9). The CE-2B cells were not intimately joined to the STO
feeder cells, and they had a polarized morphology with nu-
merous microvilli confined to the apical cell surface. Tight
junctional complexes connected the cells to one another,
and intercellular lateral connections were also mediated by
numerous spot desmosomal connections. Outstanding
among the cytoplasmic features of the CE-2B cells were
their large amounts of RER and Golgi complex (Figs. 6B
and 9). Extensive stacks of RER were observed frequently
in the cells. Mitochondria were also abundant, and large
lipid vacuoles were observed often (Figs. 6B and 9). Over-
all the cells were similar in appearance to in vivo bovine
endoderm in expanded preimplantation blastocysts except
that Golgi complexes were not apparent in the in vivo en-
doderm (Fig. 8).

Transfection of CT-1 Cells

Transient expression of GFP occurred in the CT-1 cells
48–72 h posttransfection. Of the four promoters tested,



244 TALBOT ET AL.

FIG. 9. CE-2B cell culture on STO feeder
cells at passage 2. Tight junctional area
(small arrows) and desmosomes (large ar-
rows) connected the CE-2B cells together.
Note the prominence of RER (rer) and
Golgi complexes (g) in the cytoplasm and
the smaller, less numerous microvilli (mv)
at the apical surface of the cells. 324 000.
m, Mitochondria; NU, nucleus. (Published
at 45%.)

hEF promoter gave the most expression, with an esti-
mated 4–5% of the CT-1 cells expressing. The number
of CT-1 cells expressing GFP from the CMV promoter
was nearly equivalent to that found with the hEF pro-
moter. In contrast, very few (less than 0.1%) GFP-ex-
pressing CT-1 cells were observed after transfection with
the PGK and Oct 3/4 promoter constructs. GFP expres-
sion was usually associated with the peripheries of CT-1
cell colonial outgrowths. GFP expression in STO feeder
cells was not observed.

DISCUSSION

Bovine trophectoderm and endoderm cell cultures were
initiated and propagated on STO feeder layers from IVMFC
hatched blastocysts. The trophectoderm and endoderm cells
appeared to retain in vivo-like morphology and function. A
specific function of in vivo bovine trophectoderm, bIFN-t
expression, was maintained by the CT-1 trophectoderm cul-
ture over extended secondary passage [15–18]. Similarly,
the CE-2B endoderm cell culture was continuously cul-
tured, and it exhibited the specific functional characteristic

of visceral endoderm in its expression of the protein trans-
ferrin [10,40]. Thus, although anatomical source and mor-
phological criteria can be used for identification of these
polarized epithelia, expression of bIFN-t or transferrin pro-
vides specific markers to discriminate between the two cell
types.

Ultrastructural morphological features of the CT-1 and
CE-2B cell cultures were similar to those of in vivo
trophectoderm and endoderm. A characteristic in com-
mon was the presence of intercellular junctional com-
plexes. The presence of tight junctions and desmosomes
defines the cells as epithelial and provides ultrastructural
confirmation of vectorial fluid transport across the cells
as exemplified by dome formation in vitro and expansion
of the blastocyst in vivo. The bunched-up morphology
(Fig. 8) of the in vivo cow trophectoderm cells was var-
iable, and in many areas the cells were flatter like the in
vitro CT-1 cells (Fig. 6). Microvilli appeared to be more
numerous and shorter on the CT-1 cells in comparison
with those on the in vivo trophectoderm cells, although
this varied. In vivo trophectoderm in general appeared to
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have a more dense cytoplasmic matrix than the CT-1
cells, perhaps resulting from the presence of more free
ribosomes and possibly glycogen particles [41]. Also, as
previously seen in our fixation protocol, lipid contained
within lipid vacuoles was better retained by the in vivo
trophectoderm and endoderm than by their in vitro coun-
terparts. This apparently reflects some qualitative differ-
ence in the lipid as processed and stored under in vitro
conditions [42]. RER was prominent in the in vitro cul-
tures, particularly in the CE-2B cells, where stacked RER
was commonly observed. However, abundant RER was
also observed in the in vivo cells, particularly in the en-
doderm, and extensive and swollen RER is characteristic
of endoderm cells [43–46]. The most prominent differ-
ence between in vivo and in vitro conditions in both cell
types, but particularly between in vivo endoderm and
CE-2B cells, was the extensive and numerous Golgi com-
plexes present in every section of every CE-2B cell
(Figs. 7 and 9). In contrast, in vivo endoderm cells con-
tained few and small Golgi complexes. This difference
probably reflects a response to in vitro conditions and not
a developmentally relevant change, since in vivo rumi-
nant yolk sac endoderm cells (4.5-mm crown-rump
length) have few Golgi complexes [44]. However, in hu-
mans [43], cats [45], and dogs [46], Golgi complexes are
a prominent feature of yolk sac endoderm cells.

Western blot (Fig. 5) and antiviral (Table 1) assays in-
dicated that the levels of bIFN-t produced by the CT-1 cell
cultures were comparable to those produced by blastocyst-
stage embryos and could be estimated to be between 100
and 1000 ng/ml [47]. The posttranslational modifications of
the CT-1-produced bIFN-t might be equivalent to the bIFN-
t produced in vivo. The amounts of bIFN-t transported into
the medium by the CT-1 cells could potentially be opti-
mized by adjusting the culture environment. If so, this
might be of some utility in the production of native bIFN-
t, although other eukaryotic or prokaryotic expression sys-
tems would probably remain more efficient at producing
the unmodified bIFN-t. For example, a recombinant yeast
expression system produces apparently fully functional
sheep IFN-t in milligrams per milliliter amounts [48,49].

Chromosomal content of the CT-1 cells assayed at pas-
sage 30 showed that the majority of cells in the culture had
a diploid complement (Fig. 3A). A few tetraploid meta-
phase spreads were found; this was not unexpected for
trophectoderm cells, since terminal differentiation can pro-
duce binucleated cells in ruminants [50]. However, the rel-
atively large number of hypodiploid cells within the CT-1
culture (30%) may have represented a stable subpopulation
of abnormal CT-1 cells with about 50 chromosomes, rather
than experimental error in metaphase spread preparation.
Examples of hypodiploid bovine cell lines exist [51]. How-
ever, by passage 54 the chromosome complement had shift-
ed to the point where most cells had slightly more than 60
chromosomes, indicating that the cell population was in
flux over this period and becoming near diploid in character
(Fig. 3B).

Stringfellow et al. [9] reported a trophectoderm-like
cell culture established from a bovine blastocyst desig-
nated BE-13. BE-13 cells were similar to CT-1 cells in
their sensitivity to trypsin, but otherwise they differed in
several ways. BE-13 was established from an 11-day in
vivo blastocyst without feeder layer support in Ham’s
F10 medium supplemented with FBS, insulin, and epi-
dermal growth factor (EGF). In contrast, the CT-1 cells
required feeder cells for establishment and for mainte-

nance of phenotype and growth. However, it may be that
CT-1 cells would grow slowly in the absence of the feed-
er cells as evidenced by our observations of pig troph-
ectoderm culture. The presence of EGF and insulin in the
medium might enhance such feeder cell-independent
growth. Stringfellow et al. [9] found that putative troph-
ectoderm cells lines could not be established from bovine
blastocysts less than 11 days old. This contrasts with the
present results showing that bovine trophoblast and en-
doderm cell cultures can be established from prehatched
(6–8 day) blastocysts (unpublished results) and even
blastomeres dissociated at the morula stage [52]. The cell
morphology of the BE-13 cells differed from that of CT-
1 cells. The BE-13 cells were squamous-like cells that
exhibited prominent stress fibers, dinucleated cells, swol-
len RER, few Golgi complexes, and microvilli concen-
trated at one end of the cell. The BE-13 cells were not
shown to possess tight junctions and desmosomes, and
dome formation was not reported. These morphological
features differ markedly from those of CT-1 cells and
from in vivo trophectoderm, and may reflect a trophec-
toderm cell struggling to survive in vitro. In any case,
the BE-13 cells senesced after the 38th passage, and a 1:
2 transfer ratio at each passage was necessary to achieve
this passage level. In contrast, the CT-1 cell culture has
been in continuous culture for over 76 passages, with
most passages at a 1:10 transfer ratio; and no apparent
change in morphology or expression of bIFN-t has oc-
curred over this time. The CT-1 cells therefore constitute
a cell line.

The continuous culture of preimplantation trophecto-
derm and endoderm on STO feeder cells may be a good in
vitro model for studying these cell types. The expression
of bIFN-t and transferrin by CT-1 and CE-2B cells, re-
spectively, distinguishes these cells from other cells that
might be cultured from bovine blastocysts such as putative
bovine ES cells. The CT-1 cell line and the CE2B cell cul-
ture may also be unique reagents with which to study X-
inactivation and nuclear totipotency because endoderm and
trophectoderm specifically inactivate the paternal X chro-
mosome [53,54]. Also, the bovine blastocyst-derived cell
culture established by Stringfellow et al. [9] was susceptible
to infection by several bovine viruses as indicated by cy-
topathic effects and virus titer. The authors speculated that
trophoblast cell lines could serve as models for studying
the trophoblast tropism of several bacterial agents associ-
ated with abortifacient diseases in ruminants [9]. The CT-
1 cell line might also be useful for these purposes, assuming
that the endogenous bIFN-t expression would not inhibit
viral replication [55]. Primarily, however, the CT-1 cell line
and the CE-2B cell culture should be useful for studying
cellular, cytokine, and hormone interactions involved with
recognition of pregnancy and placentation in ruminants
[56,57].
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